
Productive Parallel Programming: The PCN Approach

�

Ian Foster, Robert Olson, and Steven Tuecke

Mathematics and Computer Science Division

Argonne National Laboratory, Argonne, IL 60439

Abstract

We describe the PCN programming system, focusing on those features designed

to improve the productivity of scientists and engineers using parallel supercomputers.

These features include a simple notation for the concise speci�cation of concurrent

algorithms, the ability to incorporate existing Fortran and C code into parallel ap-

plications, facilities for reusing parallel program components, a portable toolkit that

allows applications to be developed on a workstation or small parallel computer and

run unchanged on supercomputers, and integrated debugging and performance analy-

sis tools. We survey representative scienti�c applications and identify problem classes

for which PCN has proved particularly useful.

Keywords: PCN, program composition, parallel programming, reuse, templates.

1 Introduction

After many years as academic curiosities, computers combining hundreds or thousands of

powerful microprocessors have overtaken vector processors and become essential tools for

scientists and engineers. Unfortunately, the programming of these parallel supercomputers

is still immensely time consuming. Frequently, many months of e�ort are required to

develop, validate, and tune parallel codes; apparently minor algorithmic changes can take

weeks. These factors severely limit the productivity and creativity of those using these

advanced machines.

A clear need exists for tools that reduce the cost of program development to more man-

ageable levels. Good software engineering practice tells us that these tools should possess

three characteristics: (1) a notation that permits us to program smarter, by lessening the

gap between our conception of a problem solution and its eventual implementation; (2)

support for code reuse that allows us to program less, by reusing old code when solving

new problems; and (3) a toolkit that permits us to program faster, by reducing the e�ort

required to �nd errors, adapt programs to di�erent architectures, etc.

In this article, we introduce PCN, a parallel programming system with these character-

istics. PCN has been developed over the past three years at Argonne National Laboratory

and the California Institute of Technology. It features a simple concurrent language (Pro-

gram Composition Notation), facilities for reuse of sequential and parallel code, and a

toolkit supporting compilation, debugging, and performance analysis. Important bene�ts

�

To appear in: Scienti�c Programming.

1

of the approach include the ability to rapidly prototype complex concurrent algorithms,

particularly those involving dynamic communication or computation structures; applica-

tion portability, which permits programs developed on workstation to move to networks of

workstations and to parallel supercomputers with little change; the ability to incorporate

existing Fortran and C code into parallel programs; and support for the reuse of parallel

program structures in di�erent applications.

PCN is not the solution to all programming problems. A disadvantage for some pro-

grammers is the need to learn a new programming language. Others are uncomfortable

with a high-level approach, preferring to program parallel computers at the lowest level

possible. In addition, the PCN system is research software and, as such, not yet as so-

phisticated as conventional sequential programming systems. Nevertheless, it has already

been used successfully to develop applications and to teach parallel programming to un-

dergraduates. We expect it to prove useful to many users and for many purposes.

Rather than an academic exposition of PCN, this article provides an informal intro-

duction to its capabilities and an analysis of the experiences of those using it to address

substantial programming problems. By conveying the avor of the approach and indi-

cating the classes of problems for which it appears particularly appropriate, we hope to

stimulate our readers to experiment with PCN in their own applications. The latest ver-

sion of both the software and detailed documentation can be obtained by anonymous FTP

from the directory pub/pcn at info.mcs.anl.gov.

The rest of this article is divided into �ve parts. These provide an overview of the ap-

proach, a description of the programming language, a discussion of the techniques used to

reuse existing code, a description of the programming tools, and a survey of representative

applications.

2 Approach

The focus of the PCN approach to parallel programming is the development of programs by

the parallel composition of simpler components, in such a way that the resulting programs

preserve properties of the components that they compose. In particular, deterministic

compositions of deterministic components should themselves be deterministic: the result

of such computations should never depend on the order in which components are scheduled

for execution. Similarly, the result computed by a program should be independent of how

its components are mapped to processors. This compositional property is critical to both

the development of robust applications and the reuse of existing code.

The PCN language is carefully designed to realize compositionality. In particular, it

requires that concurrently executing components interact by reading and writing special

single-assignment or de�nitional variables. A de�nitional variable is initially unde�ned

and can be assigned at most a single value. If a component attempts to read an unde�ned

variable, execution of that component is suspended until the variable is de�ned. Hence, the

result of a computation can never depend on the time at which read and write operations

occur.

This focus on parallel composition and de�nitional variables leads to the following

approach to parallel program design. A problem is decomposed into a large number

of subproblems and a process is created for each subproblem. PCN code is written to

organize the exchange of data between these processes and to coordinate their execution.

2

Existing software cells and templates may be integrated into the program; these de�ne

sets of processes that implement commonly-used operations such as parallel reductions or

transforms. Finally, the mapping of the processes to the processors of a parallel computer

is speci�ed; this can alter performance but not the result computed.

The PCN compiler is optimized for e�cient execution of programs that create many

processes and that communicate and synchronize via de�nitional variables. It ensures

that process creation, scheduling, termination, and migration are extremely inexpensive

operations: typically a few tens of instructions. (Process migration incurs an additional

cost proportional to the size of a process's data.) Read and write operations on de�nitional

variables are implemented in terms of pointer operations within a single address space and

message passing between address spaces. Processes are scheduled for execution so as to

overlap computation and communication. Data structures are created dynamically and

deallocated either when the process in which they are de�ned terminates (in the case of

local variables) or when they are no longer accessible (in the case of de�nitional variables

shared by several processes).

Components composed by PCN programs can be written in PCN or in sequential lan-

guages such as Fortran and C. In the latter case, existing code and compiler technology can

be reused. Programs that do not use Fortran common or C global data can be composed

in exactly the same way as PCN programs. If programs do use common/global data,

then certain restrictions apply, as the use of common/global data violates the require-

ment that programs only communicate via de�nitional variables. This issue is discussed

in Section 4.1.

3 Notation

Programming is rarely easy, but an appropriate notation can make it less di�cult. As

Whitehead observed of mathematics: \By relieving the brain of all unnecessary work, a

good notation sets it free to concentrate on more advanced problems" [11]. In parallel pro-

gramming, a good notation should express concurrency, communication, synchronization,

and mapping straightforwardly and clearly. It should also discourage nondeterminism,

just as a mathematical notation avoids ambiguity.

The programming notation used in the PCN system is Program Composition Nota-

tion (PCN). PCN extends sequential programming with two simple ideas | concurrent

composition and single-assignment variables | and de�nes how these ideas interact with

conventional sequential constructs [1, 6]. The PCN system also incorporates two addi-

tional constructs | virtual topologies and port arrays | that allow the de�nition and

reuse of parallel program structures called cells and templates [4].

Our description of the PCN language is divided into �ve parts. These describe in turn

the constructs used to specify concurrency, communication and synchronization, non-

determinism, mapping, and composition of process ensembles.

3.1 Concurrency

Syntax is similar to that of the C programming language. A program is a set of procedures,

each with the following general form (k; l � 0).

3

name(arg

1

,...,arg

k

)

declaration

1

; ...; declaration

l

;

block

A block is a call to a PCN procedure (or to a procedure in a sequential language such as

Fortran or C), a composition, or a primitive operation such as assignment. A composition

is written fop block

1

, ..., block

m

g, m > 0, where op is one of \jj" (parallel), \;"

(sequential), or \?" (choice), indicating that the blocks block

1

, ..., block

m

are to be

executed concurrently, in sequence, or as a set of guarded commands (a sort of parallel

case statement, with each block being a condition/action pair), respectively.

A parallel composition speci�es opportunities for parallel execution but does not indi-

cate how the composed blocks (which can be thought of as lightweight processes) are to

be mapped to processors. The techniques used to specify mapping are described below.

3.2 Communication and Synchronization

Statements in a parallel composition communicate and synchronize by reading and writing

special single-assignment or de�nitional variables. (Conventional, or mutable, variables are

also supported, but can be used only within sequential blocks.) De�nitional variables are

distinguished by a lack of declaration, are initially unde�ned, can be written (de�ned)

once using the primitive operator \=", and once written cannot be modi�ed. (An attempt

to overwrite a de�nitional variable is agged as a runtime error.) A process that requires

the value of an unde�ned variable suspends until the required data is available. This pro-

vides a dataow model of computation, with execution order within parallel compositions

determined by availability of data.

Processes that share a de�nitional variable can communicate regardless of their loca-

tion in a parallel computer. For example, in the parallel composition fjj producer(x),

consumer(x)g, the two procedure calls producer(x) and consumer(x) can use x to com-

municate, whether they are executing concurrently on one processor or in parallel on two

processors.

Consider the following de�nitions for producer and consumer. The producer de�nes

its parameter to be the string "hello", hence communicating this value to any process

that shares that variable (in the composition in the previous paragraph, this is consumer).

The consumer is de�ned in terms of a choice composition. The two guarded commands

de�ne tests on the parameter v (v == "hello" and v != "hello") and the actions that

are to be performed if these tests succeed (calls to the procedures greet() or ignore(v),

respectively). Hence, the procedure consumer suspends until v has a value and then

executes one of the two procedures.

producer(u) consumer(v)

{|| u = "hello"} { ? v == "hello" -> greet(),

v != "hello" -> ignore(v)

}

Stream Communication. A shared de�nitional variable would not be very useful if

it could only be used to exchange a single value. Fortunately, simple techniques allow a

4

single variable to be used to communicate a stream of values [5]. A stream acts like a

queue: the producer places elements on one end, and the consumer(s) take them o� the

other.

Stream communication is achieved by the incremental construction of linked list struc-

tures. The technique makes use of a data type called the tuple. A tuple is represented

by zero or more terms enclosed in parentheses, for example fg (the empty tuple) or

fhead, tailg (a two-tuple). The match operator \?=" is used to access a tuple's compo-

nents. For example, x ?= fmsg, xtg checks whether x is a two-tuple and, if so, de�nes

msg and xt to be references to its two components.

Imagine a producer and a consumer sharing a variable x. The producer de�nes x to

be a two-tuple containing a message and a new de�nitional variable (x = fmsg, xtg).

The consumer matches x ?= fmsg, xtg to access both the message and the new variable.

These operations both communicate msg to the consumer and create a new shared variable

xt that can be used for further communication. This process can be repeated arbitrarily

often to communicate a stream of messages from the producer to the consumer. The

stream is closed by de�ning the shared variable to be the empty tuple.

The following program implements this protocol. The stream producer generates n

messages, calling produce to generate each message, and then closes the stream. The

stream consumer consumes messages until the stream is closed, calling greet or ignore

to process each incoming message. Note that both procedures are de�ned recursively. For

example, the producer generates one message (by de�ning u to be the tuple fmsg, u1g)

and then calls itself recursively to produce further messages. Recursion is often used

in PCN because it allows the introduction of an unbounded number of new de�nitional

variables; the PCN compiler is designed to compile such programs e�ciently, and in fact

translates recursive procedures into iterative code. Explicit iterative constructs are also

available; these are described in a subsequent section.

stream_producer(n, u)

{ ? n > 0 ->

{|| produce(n, msg),

u = {msg, u1},

stream_producer(n-1, u1)

},

n == 0 -> u = {}

}

stream_consumer(v)

{ ? v ?= {msg,v1} ->

{|| { ? msg == "hello" -> greet(),

msg != "hello" -> ignore(msg)

},

stream_consumer(v1)

}

}

5

3.3 Nondeterminism

The use of de�nitional variables as a communication mechanism avoids errors due to time-

dependent interactions. Race conditions, in which the result of a computation depends

on the time at which a process reads a variable, cannot occur: a consumer of a variable

always suspends until the variable has a value, and then computes with a value that cannot

change.

Nevertheless, it is sometimes useful to be able to specify nondeterministic execution,

particularly in reactive applications. PCN also allows the speci�cation of nondeterministic

actions, but in a tightly controlled manner. Only if the conditions associated with two or

more actions in a guarded command are not mutually exclusive is execution nondetermin-

istic. For example, the following procedure merges two input streams (in stream1 and

in stream2) into a single output stream (out stream). Note that the two streams are not

mutually exclusive: as guards are executed concurrently, messages can be received from

either input stream, in a time-dependent manner.

merge(in_stream1, in_stream2, out_stream)

{ ?

in_stream1 ?= {msg, more_in1} ->

{||

out_stream = {msg, more_out},

merge(more_in1, in_stream2, more_out)

},

in_stream2 ?= {msg, more_in2} ->

{||

out_stream = {msg, more_out},

merge(in_stream1, more_in2, more_out)

}

}

PCN programs in which conditions are mutually exclusive are guaranteed to be deter-

ministic. This is an important property that greatly simpli�es parallel programming. (The

reader might be concerned about the possibility of writing conditions which are mistakenly

not mutually exclusive. In practice, this has not proved to be a problem.)

Two potential sources of nondeterminism which are not prevented by PCN are concur-

rent I/O operations and concurrent access to Fortran common or C global data by Fortran

or C procedures composed by PCN. The latter issue is discussed in Section 4.1.

3.4 Mapping

Parallel compositions de�ne concurrent processes; shared de�nitional variables de�ne how

these processes communicate and synchronize. Together with the sequential code executed

by the di�erent processes, these components de�ne a concurrent algorithm that can be

executed and debugged on a uniprocessor computer. However, we do not yet have a parallel

program: we must �rst specify how these processes are to be mapped to the processors

of a parallel computer. Important features of PCN are that the mapping can be speci�ed

by the programmer, and that the choice of mapping a�ects only the performance, not the

6

correctness, of the program. The following language features are used when writing code

to de�ne mappings.

Information Functions. When de�ning mappings, we sometimes require information

about the computer on which a process is executing. This information is provided by the

primitive functions topology(), nodes(), and location().

topology(): Returns a tuple describing the type of the computer, e.g. f"mesh",16,32g

or f"array",512g.

nodes(): Returns the number of nodes in the computer.

location(): Returns the location of the process on the computer.

Location Functions. Mapping is speci�ed by annotating procedure calls with system-

or user-de�ned location functions, using the in�x operator \@". These functions are eval-

uated to identify the node on which an annotated call is to execute; unannotated calls

execute on the same node as the procedure that called them. For example, the following

two procedures implement the location functions node(i) and mesh node(i,j), which

compute the location of a procedure that is to be mapped to the ith node of an array

and the (i,j)th node of a mesh, respectively. Note the use of a match (?=) to access

the components of the mesh topology type. The per cent character, \%", is the modulus

operator.

function node(i)

{|| return(i%nodes()) }

function mesh_node(i, j)

{ ? topology() ?= {"mesh", rows, cols} ->

return((i*rows + j)%nodes()),

default -> error()

}

The following composition uses the function node(i) to locate the procedure calls

p(x) and c(x).

fjj p(x) @ node(10), c(x) @ node(20)g

Location functions are often used in an iterative construct called a quanti�cation to

create a computation that executes on many processors. A quanti�cation has the general

form

{ op i over low..high : block },

and speci�es that block should be executed once for each i in the range low..high, either

concurrently (if op = jj) or sequentially (if op = ;).

The following two procedures use quanti�cations and the location functions de�ned

previously to execute the procedure work in every node of an array and mesh, respectively.

7

For example, a call to array on a 1024-processor computer will create 1024 instances of

work(), one per processor. (In practice, we may choose to use a more e�cient tree-based

spawning algorithm on a large machine.)

array()

{|| i over 0..nodes()-1 :

work() @ node(i)

}

mesh()

{ ? topology() ?= {"mesh", rows, cols} ->

{|| i over 0..rows-1 :

{|| j over 0..cols-1 :

work() @ mesh_node(i, j)

}

},

default -> error()

}

Virtual Topologies and Map Functions. The ability to specify mapping by means

of location functions would be of limited value if these mappings had to be speci�ed with

respect to a speci�c computer. Not only might this computer have a topology that was

inconvenient for our application, but the resulting program would not be portable.

PCN overcomes this di�culty by allowing the programmer to de�ne mappings with

respect to convenient virtual topologies rather than a particular physical topology. A

virtual topology consists of one or more virtual processors or nodes, plus a type indicating

how these nodes are organized. For example, 512 nodes may be organized as a one-

dimensional array, a 32� 16 mesh, etc.

The embedding of a virtual topology in another physical or virtual topology is speci�ed

by a system- or user-de�ned map function. A map function is evaluated in the context

of an existing topology; it returns a tuple containing three values: the type of the new

embedded topology, the size of the new topology, and the function that is to be used

to locate each new topology node in the existing topology. For example, the following

function embeds a mesh of size rows�cols in an array topology; the mapping will be

performed with the location function node provided previously. (The location function is

quoted to indicate that it should not be evaluated.) Note that the map function does not

check whether the new topology \�ts" in the old topology. It is quite feasible to create a

virtual topology with more nodes than the physical topology on which it will execute.

function mesh_in_array(rows, cols)

{ ? topology ?= {"array", n} ->

{|| type = {"mesh", rows, cols},

size = rows*cols,

map_fn = `node()`,

return({type, size, map_fn})

},

8

default -> error()

}

We use the in�x operator \in" to specify the map functions that will generate the

virtual topologies used in di�erent components of a program. For example, if the mesh

procedure speci�ed previously is to be executed on an array computer, we may invoke it

as follows.

mesh() in mesh_in_array(rows,cols)

Virtual topologies and map functions allow us to develop applications with respect to a

convenient and portable virtual topology. When moving to a new machine, it is frequently

possible to get adequate performance with just a naive embedding of this virtual topology.

For example, our applications invariably treat all computers as linear arrays, regardless

of their actual topology, and nevertheless achieve good performance. If communication

locality were important (for example, if we moved to a machine without cut-through rout-

ing), we would probably have to develop a map function that provides a more specialized

embedding. This can generally be achieved without changing the application code.

3.5 Port Arrays

Recall that individual processes communicate by reading and writing shared de�nitional

variables, as in the composition fjj producer(x), consumer(x)g. The port array pro-

vides a similar mechanism for use when composing sets of processes.

A port array is a array of de�nitional variables that has been distributed evenly across

the nodes of a virtual topology. A declaration \port P[N];" creates a port array P with N

elements, distributed blockwise across the nodes of the virtual topology in which the port

array is declared. N must be an integer multiple of nodes(). Elements of a port array are

accessed by indexing, in the same way as ordinary arrays; the elements can be used as

ordinary de�nitional variables.

The following procedure, a variant of the array procedure given earlier, uses port

arrays for two purposes: �rst, to provide each ring node() process with de�nitional vari-

ables for use as input and output streams; and second, to establish internal communication

streams between neighboring processes, so that each process has two streams, one shared

with each neighbor. The ith node of this structure is given elements I[i] and O[i] of

the two port arrays I and O passed as parameters, so as to allow communication with

the outside world, and two elements of the local port array S. As in the C programming

language, the dimension of an array passed as an argument is not speci�ed.

ring(I, O)

port S[nodes()], I[], O[];

{|| i over 0..nodes()-1 :

ring_node(I[i], O[i], S[i], S[(i+1)%nodes()]) @ node(i)

}

The process structure created by a call to this procedure in a four-processor virtual

topology can be represented as follows, with the solid lines indicating external port connec-

tions and the dotted lines internal streams. The box separates the internals of the process

9

structure from what is visible to other processes. The ring node procedure executed by

each process can use the four de�nitional variables passed as arguments to communicate

with other processes.

RNRN RN RN

I[0] I[1] I[3]

O[0] O[2]O[1] O[3]

I[2]

S[1] S[2 S[3] S[0]S[2]

4 Reuse

The ability to reuse existing code is vital to productive programming. The PCN system

supports two forms of reuse: reuse of sequential code written in C or Fortran, and reuse of

parallel code written in PCN. The former is important when migrating existing sequential

applications to parallel computers; the latter is becoming increasingly important as our

parallel code base grows.

4.1 Sequential Code: Multilingual Programming

A simple interface allows sequential code (currently, Fortran and C are supported) to be

integrated into PCN programs as procedure calls, indistinguishable for most purposes from

calls to PCN procedures. Sequential procedures can be passed de�nitional and mutable

data, but suspend until de�nitional data is available and hence never deal with incomplete

information. Sequential procedures can modify only mutable variables.

A de�ciency of the Fortran interface is that no special allowance is made for \common"

data. Each physical processor has a single copy of all common data declared in an appli-

cation's Fortran code, and every process on a processor has access to that data. Hence,

while PCN data structures are encapsulated in processes to prevent concurrent access, the

same protection is not provided for common data. It is the programmer's responsibility

to avoid errors due to concurrent access. Experience shows that programmers deal with

this problem in one of two ways. (1) If an application is of moderate size, or is being de-

veloped from scratch, they often choose to eliminate common data altogether. This may

be achieved by allocating arrays in PCN and passing them to the di�erent Fortran pro-

grams. Although this approach requires substantial changes to the application, the bulk

of the existing Fortran can be retained, and the full exibility of PCN is available to the

programmer. (2) If substantial rewriting of an application is not possible, programmers

maintain common data in its usual form and use PCN to organize operations on this data

in a way that avoids nondeterminate interactions. Although certain operations are then

more di�cult (e.g., process migration is complicated, and the programmer must check for

race conditions manually), other bene�ts of the PCN approach still apply.

The interface to sequential programming languages means that we do not need to

throw away the many years of investment in sequential code and compiler development

when moving to parallel computers. Fortran and C are good sequential languages but are

10

less well suited to parallel programming. Experience suggests that PCN is a good parallel

language; nevertheless, it cannot compete with Fortran and C in code base and compiler

technology. Multilingual programming permits us to take the best from each approach,

using PCN for mapping, communication, and scheduling, and Fortran and C for sequential

computation.

4.2 Parallel Code: Cells and Templates

Cells. Our approach to the reuse of parallel code is based on what we term a software

cell: a set of processes created within a virtual topology to perform some distinct function

such as a reduction or a mesh computation, and provided with one or more port arrays

for communication with other program components [4]. We have already seen several

examples of cells: for instance, the procedure ring in the preceding section implements a

cell that performs ring pipeline computations.

The interface to a PCN cell consists simply of the port arrays and de�nitional variables

that are its arguments. A cell de�nition does not name the processors on which it will

execute, the processes with which it will communicate, or the time at which it expects

to execute. These decisions are encapsulated in the code that composes cells to create

parallel programs: a virtual topology speci�es the number and identity of processors, port

arrays specify communication partners, and the PCN compiler handles scheduling. As we

will see in subsequent examples, the simplicity of this interface allows cells to be reused

in many di�erent contexts.

Templates. The ring cell would be more useful if the code to be executed at each node

could be speci�ed as a parameter. This is possible, and in this case we refer to the cell

de�nition as a template, as it encodes a whole family of similar cells. For example, the

following is a template version of ring. The procedure to be executed is passed as the

parameter op, which is quoted in the body to indicate that it is used as a variable.

ring(op, I, O)

port S[nodes()], I[], O[];

{|| i over 0..nodes()-1 :

`op`(I[i], O[i], S[(i+1)%nodes()], S[i]) @ node(i)

}

This template invokes the supplied procedure with four de�nitional variables as addi-

tional arguments. For example, if op has the value nbody(p), then a procedure call

nbody(p,d1,d2,d3,d4) (d1..d4 being the variables from the port array) is invoked on

each node of the virtual topology. All parameters to op must be de�nitional variables; it is

the programmer's responsibility to ensure that the number and type of these parameters

matchs op's de�nition.

Example. We illustrate how cells and templates are composed to construct complete

applications. We make use of the ring template and also the following simple input and

output cells: load reads values from a �le and sends them to successive elements of the

port array P; store writes to a �le values received on successive elements of port array Q.

Both use the sequential composition operator to sequence I/O operations.

11

load(file, P)

port P[];

{ ; i over 0..nodes()-1 : read(file, stuff), P[i] = stuff }

store(file, Q)

port Q[];

{ ; i over 0..nodes()-1 : write(file, Q[i]) }

We compose the three cells to obtain a program main that reads data from infile,

executes a user-supplied function in the ring pipeline (e.g., a naive N-body algorithm),

and �nally writes results to outfile. Note that although we use a parallel composition,

data dependencies will force the three stages to execute in sequence. However, if load

were to output a stream of values rather than a single value per node, them the three

stages could execute concurrently, as a pipeline.

main(param,infile, outfile)

port P1[nodes()], P2[nodes()];

{|| load(infile, P1),

ring(`nbody(param)`, P1, P2),

store(outfile, P2)

}

Data ows from load to ring via port array P1 and from ring to store via port array

P2. This is illustrated in the following �gure, which shows the process structure created

in a four-node topology.

RNRN RN RN

store

load

P1

P2

The complete program executes in an array topology (\main(if,of) in array()")

and will create a ring with one process per node of that topology.

5 Tools

The high-level nature of the PCN language requires a sophisticated compiler (to achieve

e�cient execution on sequential and parallel computers) and a specialized debugger (to

12

keep track of multiple concurrent processes). These tools are integrated with other com-

ponents to form a toolkit that supports debugging, performance tuning, and integration of

Fortran and C code, and that allows programs to be executed on a wide variety of parallel

computers and workstation networks [6]. In this section, we describe four components

of this toolkit: compiler, network implementation, parallel debugger, and performance

analysis tools.

5.1 Portable Compiler and Runtime System

We summarize the techniques used to translate PCN programs into executable code, so

as to provide some insights into the e�ciency of the PCN implementation.

The PCN compiler implements both the PCN language and the constructs introduced

to support reuse of parallel code. It translates PCN programs to a machine-independent,

low-level form that is linked with both object code for sequential language procedures and

a small runtime system, to produce an executable program. The compiler is responsible for

generating code to perform specialized operations such as creating processes, suspending

processes, terminating processes, and generating messages; the runtime system routes

incoming messages, schedules executable processes, and manages the heap on which are

allocated process records, program data, etc.

The compiler and runtime system have been carefully designed to optimize the cre-

ation, scheduling, migration, and termination of lightweight processes. A process with

n arguments is represented by a process record that occupies n + 2 words of memory,

with n of these words containing pointers to arguments; hence, processes can be created,

scheduled, or descheduled in a few tens of instructions. A process is migrated to another

processor by communicating the process record and the data structures accessible from

this process record. Thus, the cost of migration is primarily the cost of transferring its

data, and processes with little data can be migrated extremely cheaply. The low cost

of scheduling means that the runtime system is able to schedule idle tasks when waiting

for the results of remote communication operations. That is, it automatically overlaps

computation and communication operations.

The compiler does not currently optimize the performance of pure PCN code, which

may execute 5{10 times slower than equivalent Fortran or C code. As PCN applications

typically spend much of their time executing Fortran or C, this has not been a serious

di�culty. (The pro�ling tools described below can be used to identify bottlenecks; if nec-

essary, PCN procedures can be rewritten in Fortran or C to improve performance.) Future

compilers will improve PCN performance, allowing a larger proportion of applications to

be written in PCN.

A novel aspect of the compiler is a programmable source transformation system, in-

corporated as an optional stage in the compiler pipeline, after the parser and before the

encoder. Programmers can use this facility to implement application-speci�c extensions to

the PCN language. For example, the transformation system has been used to implement

specialized composition operators that generate self-scheduling computations [3].

5.2 Network Implementation

The network implementation of PCN (net-PCN) allows users to treat a set of workstations

as a parallel computer. Programs developed for multiprocessors and multicomputers can

13

be run without modi�cation on networks, although because of higher communication costs,

algorithms must normally be more coarse-grained to execute e�ciently.

Net-PCN can run on any machine that supports the TCP communication protocol.

Hence, a single computation can in principle run on several workstations of a particular

type, several workstations of di�ering types, several processors of a multiprocessor, or a

mix of workstations and multiprocessor nodes. Currently, we require that all processors

involved in a computation employ common representations for the basic PCN data types

(characters, integers, and double-precision oats). In the future, type conversions will

be performed automatically, allowing PCN programs to run transparently on arbitrary

networks.

A useful component of Net-PCN is a utility program called host-control, which

provides facilities for managing a network computation. This utility allows the user to

inquire about the status of nodes available to Net-PCN, add and delete nodes, and execute

programs [10].

5.3 PDB: A Parallel Debugger

Debugging tools that assist in the location of logical errors are, of course, a critical compo-

nent of any programming system. PCN's unconventional language constructs, in partic-

ular its lightweight processes and dataow synchronization, require specialized debugging

support. This is provided by the PCN symbolic debugger, PDB.

The major di�erence between PCN and conventional sequential programming lan-

guages is that in PCN programs, many threads of control (processes) can be active at one

time. Hence, PDB not only provides conventional debugger features, such as the ability to

interrupt execution and examine program arguments, but also permits the user to examine

enabled and suspended processes, identify de�nitional variables for which values have yet

to be produced, and control the order in which processes are scheduled for execution.

A common error in PCN programming is for one program component not to produce

a value required by another component. This results in a deadlock situation, in which all

processes are suspended waiting for data. This situation can be detected by PDB. The

programmer can examine the set of suspended processes and identify variables for which

no values have been produced.

5.4 Understanding Performance

In parallel computing, where performance is critical and often non-intuitive, it is important

to provide tools to assist in the identi�cation of performance errors. Two such tools, Gauge

and Upshot, have been integrated into PCN.

Gauge. Gauge is an execution pro�ler: it collects information about the amount of time

that each processor spends in di�erent parts of a program [9]. It also collects procedure

call counts, message counts, and idle time information. Three properties of Gauge make

it particularly useful: pro�ling information is collecting automatically, without any pro-

grammer intervention; the overhead incurred to collect this information is small, typically

much less than 1 per cent; and the volume of data does not increase with execution time.

A powerful data exploration tool permits graphical exploration of pro�le data. The use of

Gauge is illustrated in a subsequent section.

14

Upshot. Upshot is a trace analysis tool that can provide insights into the �ne-grained

operation of parallel programs [8]. Upshot requires that the programmer instrument a

program with calls to event logging primitives. These events are automatically recorded

and written to a �le when a program runs. A graphical trace analysis tool allows the

programmer to examine temporal dependencies between events. Like any trace-based

tool, Upshot su�ers from scaling problems. However, it can be useful when used in a

controlled manner, to examine local phenomena identi�ed as problematic by Gauge.

6 Applications

PCN has been used in substantial programming projects that have produced programs

used to further scienti�c research on the world's fastest computers. For example, the

�rst two applications operational on the 528-processor, 30 Gops Intel Touchstone Delta

system | a geophysical modeling code and a uid dynamics code | were both PCN

programs [2, 7]. Here, we describe one of those programs, survey other representative

applications, and identify factors that appear to favor the use of PCN for programming

projects.

6.1 Icosahedral Climate Modeling Code

This application implements a numerical method proposed for use in climate models, a

second-order, conservative control volume method on an icosahedral-hexagonal grid. The

code was developed to permit detailed studies of both the method's accuracy and the long-

term behavior of fundamental modes of the atmospheric circulation. The code integrates

existing Fortran and C code into a parallel framework implemented in PCN [2].

An icosahedral-hexagonal grid can be structured as 10 n�n meshes plus two separate

polar points. The parallel algorithm decomposes each mesh into c

2

submeshes, giving 10

c

2

+ 2 subdomains, two with one point and the rest with (n/c)

2

points. Communication

must be performed to obtain values from neighboring subdomains during integration. The

design of an e�cient mapping is complicated by the irregular domain. On some parallel

computers, it may be desirable to place two or more subdomains on the same processor.

10

11

0 1 2 3 4

5 6 7 8 9

Figure 1: Icosahedral Mesh Domain Decomposition

15

Implementation. The development of the parallel code is simpli�ed if mapping is spec-

i�ed with respect to a virtual topology with the same shape as the problem domain [4].

We de�ne an ico mesh topology containing ten c�c meshes and two polar processors

(Figure 1) and map functions rhombus(i) and pole(i) that embed subtopologies corre-

sponding to a single mesh or pole in an ico mesh. These functions are de�ned as follows.

They locate rhombus i on nodes ic

2

..(i+1)c

2

-1 and pole

�

j on node 10c

2

+j of an ico mesh

topology.

function rhombus(i)

{ ? topology() ?= {"ico_mesh", c}, i >= 0, i < 10 ->

{|| type = {"mesh",c,c},

size = c*c,

map_fn = `add_offset(i*c*c)`,

return({type, size, map_fn})

},

default -> error()

}

function pole(i)

{ ? topology() ?= {"ico_mesh", c}, i >= 0, i < 2 ->

{|| type = {"mesh",1,1},

size = 1,

map_fn = `add_offset(10*c*c+i)`,

return({type, size, map_fn})

},

default -> error()

}

function add_offset(offset,i)

{|| return(i + offset) }

The following sketch of the top-level code for this application shows how mapping is

expressed in terms of the icosahedral topology. Ten calls to a mesh template are used to

set up a mesh cell inside each rhombus, two calls to poleop set up the polar computa-

tions, a call to a reduce cell establishs a global reduction structure (used for computing

global minimums), and the interconnect procedure establishes communication streams

between the various cells. For brevity, we omit the de�nitional variables representing

communication streams.

sphere()

{|| {|| i over 0..9 :

mesh(...) in rhombus(i)

},

poleop(...) in pole(0),

poleop(...) in pole(1),

reduce(...),

interconnect(...)

16

}

The mesh procedure used to create a single mesh is essentially the same as that out-

lined in Section 3.4. As the code executed within a subdomain is derived from the original

Fortran and C, and a global reduction library is available, the only code that must be de-

veloped speci�cally for this application is the interconnect procedure and some interface

code. To give an impression of what the interface code looks like, we include the main

driver executed for each subrhombus. Conceptually, this alternates communication and

computation. However, there are some subtleties. For example, the code communicates

with a reduction cell to determine a global time step (�t) consistent with the CFL con-

dition. The use of the new �t is delayed for one iteration so as to permit overlapping of

the communication required for the reduction with other computation. This is achieved

by using dt as �t in the current step, and passing new dt to the recursive call to step

for use as �t in the next step.

step(args,tau,tmax,dt,subrhombus,streams,to_r)

double subrhombus[];

{ ?

tau < tmax ->

{ ;

{|| /* Compute "local_dt" */

find_local_dt(subrhombus,local_dt),

/* Check old "dt" ok for this time step */

{ ? local_dt < dt -> error() },

/* Initiate computation of "new_dt" */

to_r = {{"min",local_dt,new_dt},to_r1}

/* Exchange data with neighbors */

communications(streams,subrhombus,streams1)

},

pre_filter(args,subrhombus),

/* Compute on grid, using old "dt" */

update_grid(args,dt,tau,subrhombus),

post_filter(args,subrhombus),

/* Proceed to next time step, passing "new_dt" */

step(args,tau+dt,tmax,new_dt,subrhombus,streams1,to_r1)

},

default -> terminate(args,subrhombus)

}

Experiences. The parallel code was developed in collaboration with the mathematician

who wrote the original sequential code. He provided advice to the undergraduate intern

who wrote the parallel program, and assisted with various enhancements to the numerical

method. We were fortunate in that the Fortran code used common storage only for

constants; storage for program data was allocated by a C driver. This meant that we

could reuse much of the Fortran without change. In addition, once we had set up the

constants in the common storage on each processor, we were free to map processes to

17

processors in any way we wanted. The complete code totals 1400 lines Fortran, 870 lines

C, and 750 lines of PCN. The relatively large amount of PCN code reects the fact that

a number of enhancements to the sequential code were implemented in PCN rather than

Fortran, due to the greater ease of programming in the higher-level language.

The parallel program was developed, debugged, and re�ned on a Sun workstation.

The resulting code was moved to a 26-node Sequent Symmetry shared memory computer

for performance studies and from there was ported with only minor changes to a 192-

node Symult s2010 mesh, 64-node Intel iPSC/860 hypercube, and 528-node i860-based

Intel Touchstone Delta mesh. The changes were due primarily to use of a di�erent I/O

structure on the Delta, and a need to work around certain de�ciencies in the Delta's �le

system (since corrected). This portability allowed us to obtain scienti�c results within one

week of the Delta's being installed at Caltech in May 1991; applications developed with

other technologies were not operational until weeks or even months later.

Pro�le and trace data provided by Gauge and Upshot allowed us to identify mapping

and load balancing problems in early versions of our program. One problem was that a

too-coarse grained decomposition of the Fortran code gave the PCN compiler too little

opportunity to overlap computation and communication. The result was much idle time.

A more �ne-grained implementation was easily achieved in a few hours work; this gave

the good performance results reported below.

An example of a load imbalance is illustrated in Figure 2. This is a Gauge histogram

display of summary data for a run on 492 Delta processors, with each pixel in the vertical

dimension representing a processor and shading distinguishing time spent idle (light) and

busy (dark). (About 260 processors are visible.) A slight load imbalance is evident: it

appears that the processors handling location (0,0) in each rhombus are spending more

time computing than other processors. Other Gauge facilities allowed us to isolate the

Fortran routine in which the load imbalance occurs, at which point it was easily corrected

by modifying the Fortran code. We claim that without Gauge it would have been di�cult

to correct this load imbalance (or even, perhaps, to suspect its existence).

Good parallel e�ciencies are achieved on all four parallel computers. On the Delta, we

obtain approximately 2.5 Gops (5 Mops per processor) and 80 per cent e�ciency relative

to the pure Fortran code running on a single i860 processor, for a problem size of N = 56

(approximately 150-km resolution). This compares favorably with other applications,

which have typically achieved 3{6 Mops/processor. Tuning of the sequential Fortran and

improvements to the Delta compiler are expected to further improve overall performance.

The parallel code uses a simple embedding of the icosahedral mesh that is not special-

ized for either hypercube or mesh topologies. This mapping does not attempt to cluster

neighboring icosahedral mesh nodes but simply allocates nodes in the icosahedral mesh to

consecutive nodes in the underlying computer. It is speci�ed as follows.

function icosahedron(c)

{|| type = {"ico_mesh", c},

size = 10*c*c+2,

map_fn = `node()`,

return({type, size, map_fn})

}

Because parallel e�ciency is so good, we have not been motivated to explore alternative

18

Figure 2: Gauge performance display: time breakdown

19

mappings of the icosahedral mesh. (Some tinkering with the mapping did not appear to

generate signi�cant improvements; this is probably to be expected, given that cut-through

routing in the Symult and Delta reduces the importance of communication locality.) Nev-

ertheless, the use of the icosahedral virtual topology leaves us with the option of exploring

alternatives in the future, if either improvements in per-node performance increase rela-

tive communication costs, or the code is ported to a machine on which locality is more

important. One potentially interesting mapping would fold the whole icosahedral mesh

structure (locating two or more nodes per processor) so as to reduce message latency. Of

course, this can be achieved without changing the application code.

6.2 Application Survey

Most applications developed to date are, like the icosahedral code, scienti�c in nature;

almost all use PCN to organize the parallel execution of pre-existing Fortran or C code.

Although they solve a wide variety of problems, many can be structured in terms of one

or more of a small number of basic cells and templates. We describe some representative

examples, indicating the structures used in the implementations. We also give code sizes

when this information is available to us.

Mesh Structures. The structure of many di�erent mesh-based applications can be

captured in one- or two-dimensional mesh templates. A two-dimensional mesh template

forms a building block for both the icosahedral code and another climate modeling code

based on overlapping stereographic meshes [2] (3800 lines C, 640 lines PCN). Other mesh-

based applications include a computational uid dynamics code developed by Harrar et al.

for computing Taylor-vortex ows, based on a torus structure [7] (5300 lines Fortran, 900

lines PCN); a �nite-element code for simulating ow in Titan rocket engines (9000 lines

Fortran, 180 lines PCN); and a parallel implementation of the mesoscale weather model

MM4 (15000 lines Fortran, 250 lines PCN). Work is under way to build a version of MM4

in which the mesh template performs dynamic load balancing.

Ring Structures. Cells similar to the ring structure presented in Section 4.2 form the

basis for several applications. A code for computing nonlinear dynamics properties of

extended climate simulations uses an algorithm similar to that used for naive N-body

simulations of molecular dynamics (250 lines Fortran, 170 lines PCN). Essentially the

same algorithm and structure have also been used in programs for computing molecular

interactions and covariances between bases in genetic sequences (the latter is 500 lines C,

800 lines PCN). Similar structures are used in a parallel implementation of the spectral

transform method used in climate modeling (7400 lines Fortran, 370 lines PCN).

Tree Structures. Tree and buttery structures are used in many codes to perform

parallel reductions. A good example of a code based entirely on a tree structure is one

developed by Wright to solve two-point boundary value problems [12] (700 lines Fortran,

50 lines PCN). This algorithm dynamically creates a process tree; data is produced at the

leaves, ows up the tree to the root (being reduced at each node) and then back down to

the leaves to yield the �nal solution [6]. The code is de�ned with respect to a tree virtual

topology; the map function that de�nes this topology speci�es how the complete structure

20

is embedded in a parallel computer. Note that it is the low cost of process creation and

migration in PCN which makes this dynamic formulation of the algorithm (which provided

to be particularly convenient) feasible.

Self-Scheduling Structures. A self-scheduling program incorporates code to dynami-

cally map tasks to idle processors; although this approach introduces additional overhead

relative to a static schedule, it is essential for some very dynamic problems. Self-scheduling

programs can be constructed easily in PCN because of the simplicity of process migra-

tion [3]. (The global address space provided by the compiler means that processes can

be migrated as data structures.) Self-scheduling applications include codes for aligning

genetic sequences, computing phylogenetic trees, and predicting protein structure. (Com-

putational biology is a rich source of applications for self-scheduling techniques, because

of the frequent use of heuristics.) An application under development at Argonne schedules

tasks to ring structures (each involving several processors) rather than to individual proces-

sors. An interesting aspect of all these codes is that the scheduling code can be separated

from the application-speci�c code in a distinct scheduling cell. Alternative scheduling cells

can be substituted without changing the application; typically the scheduling structure is

speci�ed in 20{100 lines of code.

Genetic Algorithms. Genetic optimization algorithms maintain a population of can-

didate solution vectors and apply simulated natural selection to improve the quality of

this population. One approach to parallelizing these algorithms is to maintain multiple

populations, with periodic exchanges of individual vectors. Our PCN implementation of a

parallel genetic algorithm is parameterized with the initialization, mutation, and mating

operators that de�ne a genetic algorithm. The PCN code handles all aspects of execution

on a parallel computer, using a router cell for asynchronous communication of selected

individuals between populations and a reduction cell for computing global values when

checking for termination. The PCN code totals 500 lines; applications developed with this

code have added anything from a few hundred lines of C to 6000 lines of Fortran.

6.3 Discussion

As this brief survey shows, PCN applications span a wide range, from the simple and

straightforward to the sophisticated and complex. The amount of PCN code incorporated

in the various programs depends both on the complexity of the parallel algorithms and

the extent to which PCN was used for algorithm development in addition to porting.

It is probably too early to draw �rm conclusions regarding the merits of the approach.

However, we can make a few observations concerning user reactions. We �nd that pro-

grammers perceive a substantial bene�t from the use of PCN (and frequently become

ardent advocates of the technology) when their programming problem has one or more of

the following characteristics.

� A complex communication structure, or a need to overlap computation and commu-

nication.

� A need for load balancing.

21

� Dynamic computation, communication, or mapping structures.

� A need for portability and scalability.

� Initial performance errors that are corrected by using Gauge.

� An interest in exploring algorithmic alternatives: e.g., di�erent stencils, reduction

strategies, communication algorithms, or mappings.

� An ability to reuse existing cells and templates.

In contrast, programmers working with simple, regular problems (such as one-dimensional

decompositions with static mapping) �nd it hard to justify the inevitable learning curve

associated with a new approach to programming.

7 Conclusions

The ability to develop parallel programs quickly and easily is becoming increasingly impor-

tant to many scientists and engineers. Although we cannot expect parallel programming

to become easy, we can avoid unnecessary di�culties by using appropriate tools. In this

article, we have described tools that take us several steps beyond the low level facilities

commonly available on parallel supercomputers. A simple concurrent programming no-

tation allows us to express complex parallel algorithms without unnecessary contortions.

Interfaces to sequential languages allow us to reuse existing Fortran and C code. Support

for cells and templates allows us to de�ne and reuse parallel program structures. Com-

piler, debugging, and performance analysis tools reduce the labor associated with program

development and provide portability over a wide range of machines.

PCN has already been used to develop substantial applications; other application

projects are under way. Optimizing compilers are being developed, with particular empha-

sis on the requirements of �ne-grained computers. Libraries of software cells and templates

are being developed to support uid dynamics, geophysical modeling, and computational

chemistry; similar libraries can and should be developed for other areas of computational

science.

Acknowledgments

This work is a collaborative e�ort involving research groups at Argonne and Caltech.

As such, it owes a great debt to many individuals. Steve Taylor leads the research at

Caltech. Mani Chandy has contributed to the language de�nition. Sharon Brunett and

Dong Ling are responsible for compiler development. Gauge and Upshot were developed

by Carl Kesselman and Ewing Lusk, respectively. I-liang Chern and Steve Hammond

helped develop the icosahedral grid application.

This research was supported at Argonne by the National Science Foundation's Cen-

ter for Research on Parallel Computation under Contract NSF CCR-8809615 and by the

Applied Mathematical Sciences subprogram of the O�ce of Energy Research, U. S. De-

partment of Energy, under Contract W-31-109-Eng-38.

22

References

[1] Chandy, C., and Taylor, S., An Introduction to Parallel Programming, Jones and

Bartlett, 1991.

[2] Chern, I., and Foster, I., Design and parallel implementation of two methods for

solving PDEs on the sphere, Proc. Conf. on Parallel Computational Fluid Dynamics,

Stuttgart, Germany, Elsevier Science Publishers B.V., 1991.

[3] Foster, I., Automatic generation of self-scheduling programs, IEEE Trans. Parallel

and Distributed Systems, 2(1):68{78, 1991.

[4] Foster, I., Information hiding in parallel programs, Preprint MCS-P290-0292, Ar-

gonne National Laboratory, 1992.

[5] Foster, I., and Taylor, S., Strand: New Concepts in Parallel Programming, Prentice-

Hall, Englewood Cli�s, N.J., 1989.

[6] Foster, I., and Tuecke, S., Parallel Programming with PCN, Technical Report ANL-

91/32, Argonne National Laboratory, 1991.

[7] Harrar, H., Keller, H., Lin, D., and Taylor, S., Parallel computation of Taylor-vortex

ows, Proc. Conf. on Parallel Computational Fluid Dynamics, Stuttgart, Germany,

Elsevier Science Publishers B.V., 1991.

[8] Herrarte, V., and Lusk, E., Studying parallel program behavior with Upshot, Tech-

nical Report ANL-91/15, Argonne National Laboratory, 1991.

[9] Kesselman, C., Integrating Performance Analysis with Performance Improvement in

Parallel Programs, Technical Report UCLA-CS-TR-91-03, UCLA, 1991.

[10] Olson, R., Using host-control, Technical Memo ANL/MCS-TM-154, Argonne Na-

tional Laboratory, 1991.

[11] Whitehead, A., An Introduction to Mathematics, Oxford University Press, 1958.

[12] Wright, S., Stable parallel algorithms for two point boundary value problems, Preprint

MCS{P178{0990, Argonne National Laboratory, and SIAM J. Sci. Statist. Comput.,

1992 (in press).

23

